• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Geozentrum Nordbayern EN
  • FAUTo the central FAU website
  1. Friedrich-Alexander University
  2. Faculty of Sciences
  3. Department of Geography and Geosciences
Suche öffnen
  • Deutsch
  • GZN#Instagram
  • #Facebook
  • #Youtube
  1. Friedrich-Alexander University
  2. Faculty of Sciences
  3. Department of Geography and Geosciences

Geozentrum Nordbayern EN

Navigation Navigation close
  • Prospective Students
    • Application and enrollment
    • Career paths after graduation
    • That’s why studying at the GeoZentrum Nordbayern is worthwhile!
    Prospective Students
  • Study
    • Start of Studies
    • Bachelors at the GeoZentrum
    • Masters at GeoZentrum
    • Geoscience Minor
    • Examination Regulations, Downloads and Evaluation
    • Career prospectives
    • Contact
    Study
  • Research
    • Research groups
    • Research projects
    • Research focus
    • Laboratory equipment
    • Publications
    Research
  • Data and Software
    • Databases
      • Contributions
    • Software extensions
    • Software applications
    Data and Software
  • Schools and guests
  • GeoZentrum
    • Organisation
    • Maps
    • Team
    GeoZentrum
  1. Home
  2. Applied Geology
  3. Team
  4. Prof. Dr. Gabriele Chiogna

Prof. Dr. Gabriele Chiogna

In page navigation: Applied Geology
  • Team
    • Anja Schuster
    • Carla Feistner
    • Christina Schubert
    • Dr. Mohammad Alqadi
    • Dr. Xinyang Fan
    • Jan Maier
    • Mark Bauer
    • Mónica Basilio Hazas
    • Sachintha Senarathne
    • Robert van Geldern
    • Irene Wein
    • Christian Hanke
    • Beatrice Richieri
    • Michael Wehrl
    • Prof. Johannes Barth, PhD
    • Prof. Dr. Gabriele Chiogna
    • Sybille Heider (Secretaries office)
    • Christina Zametzer
    • Aixala Gaillard
    • Dr. Anna-Neva Visser
    • Emeriti and Alumni
  • Hydro- & Environmental Geology
  • Modeling of Environmental Systems
  • Laboratories
  • Publications
  • Projects

Prof. Dr. Gabriele Chiogna

  • Google Scholar
  • ORCiD
GC

Prof. Dr. Gabriele Chiogna

Professors

Address

Schlossgarten 591054 Erlangen

Contact

  • Email: gabriele.chiogna@fau.de

Research Interests

  • Modelling of karst and porous aquifers
  • Mixing processes
  • Alpine hydrology
  • Environmental impacts of hydropower production

Curriculum Vitae

Civil status: Married, 3 children.

Education

  • 06.11.2019 | German Habilitation in Hydrology | TU Munich
  • 05.04.2017 | Italian Habilitation in Sector 08/A1 Hydraulics, Hydrology and Hydraulic Constructions
  • 2007 – 2011 | Ph.D. Degree in Geology, University of Tuebingen, Germany | Thesis: “Transverse mixing of conservative and reactive tracers in porous media‟.
  • 2010 | Visiting PhD student at Stanford University, USA. (October – December).
  • 2007 – 2009 | Master’s degree in Applied Environmental Geosciences, University of Tübingen | Thesis: “The Relevance of Compound Dependent Dispersion Coefficients for Modeling of Mixing-Controlled Reactive Transport”.
  • 2005 – 2007 | Italian-German Double degree program in Physics, University of Tübingen and University of Trento | Thesis: “The Derivative Riemann Problem in Special Relativistic Hydrodynamics”.
  • 2002 – 2005 | Bachelor’s degree in Physics, University of Trento, Italy | Thesis: “Electric characterization of BJT silicon radiation detectors”.

Professional Career

  • 01.04.2024 – present | Professor of Applied Geology and Modeling of Environmental Systems |Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
  • 2023 – present | Board member of the hydropeaking research network
  • 2023 – present | Associate editor Journal of Hydrology
  • 2022 | Editors’ Citation for Excellence in Refereeing for Water Resources Research
  • 2021 | Editors’ Citation for Excellence in Refereeing for Water Resources Research
  • 01.03.2021 – present | Adjunct Professor of Sustainable Resources Management | University of Innsbruck, Austria
  • 07.11.2019 – 31.03.2024 | Privat Dozent at the Chair of Hydrology and River Basin Management, Faculty of Civil, Geo and Environmental Engineering | Technical University of Munich, Germany
  • 10.2016 – present | Associate Editor Hydrological Science Journal
  • 10.01.2021 – 31.12.2021 | Participation to the Flying Faculty Program of the German Jordanian University, Visiting Lecturer
  • 01.10.2016 – 30.09.2020 | Professor of Sustainable Resources Management | University of Innsbruck, Austria
  • 01.01.2015 – 06.11.2019 | Group Leader at the Chair of Hydrology and River Basin Management, Faculty of Civil, Geo and Environmental Engineering | Technical University of Munich, Germany
  • 31.10.2012 – 17.02.2017 | Board member and founder of the Academic spin-off of the University of Trento Smart Hydrogeological Solutions srl | Italy
  • 15.04.2011 – 31.03.2015 | Freelance scientific consultant (groundwater risk assessment, groundwater remediation, applied research projects, patent management and application)
  • 01.09-2015 – 31.10.2015 | Visiting lecturer at the Department of Civil Environmental and Mechanical Engineering | University of Trento, Italy
  • 01.04.2013 – 15.01.2015 | Post-Doctoral Fellow at the Center for Applied Geoscience | University of Tübingen, Germany
  • 01.11.2013 – 10.12.2013 | Visiting scientist in the Department of Civil Engineering | Universidad de Chile, Chile
  • 21.03.2011 – 20.03.2013 | Post-Doctoral Fellow at the department of Civil and Environmental Engineering | University of Trento, Italy

Schlüsselpublikationen

  1. Chiogna G., Eberhardt C., Grathwohl P., Cirpka O.A. and Rolle M. (2010), Evidence of compound dependent hydrodynamic and mechanical transverse dispersion by multi-tracer laboratory experiments, Environ. Science and Technology, 44, 666-693. doi:10.1021/es9023964
  2. Chiogna G., Hochstetler D. L., Bellin A., Kitanidis P. K. and Rolle M. (2012), Mixing, entropy and reactive solute transport, Geophys. Res. Lett., 39, L20405. doi:10.1029/2012GL053295.
  3. Chiogna G., Cirpka O.A., Rolle M. and Bellin A. (2015) Helical flow in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resour. Res. doi: 10.1002/2014WR015330.
  4. Marcolini G., Bellin A. and Chiogna G. (2017) Performance of the Standard Normal Homogeneity Test for the homogenization of mean seasonal snow depth time series, International Journal of Climatology 37 (S1), 1267-1277
  5. Chiogna G., Marcolini G., Liu W., Pèrez Ciria T. and Tuo Y. (2018) Coupling hydrological modelling and support vector regression to model hydropeaking in alpine catchments Sci. Tot. Env., 633, 220-229
  6. Pérez Ciria T, Labat D, Chiogna G*. (2019). Recent and historical effects of hydropeaking on streamflow time series at multiple spatial and temporal scales in the Adige and Inn River Basins. Journal of Hydrology, 124021
  7. Bittner, D., Parente, M. T., Mattis, S., Wohlmuth, B., & Chiogna, G. (2020). Identifying relevant hydrological and catchment properties in active subspaces: An inference study of a lumped karst aquifer model. Advances in Water Resources, 135, 103472.
  8. Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C., Morin, S., … & Kotlarski, S. (2021). Observed snow depth trends in the European Alps 1971 to 2019. The Cryosphere, 1-5
  9. Basilio Hazas, M., Marcolini, G., Castagna, M., Galli, M., Singh, T., Wohlmuth, B., & Chiogna, G. (2022). Drought conditions enhance groundwater table fluctuations caused by hydropower plant management. Water Resources Research, 58(10), e2022WR032712.
  10. Richieri, B., Bittner, D., Hartmann, A., Benettin, P., van Breukelen, B. M., Labat, D., & Chiogna, G. (2023). Using continuous electrical conductivity measurements to derive major solute concentrations in karst systems. Hydrological Processes, 37(6), e14929.

2026

  • Feistner, C., Basilio Hazas, M., Wohlmuth, B., & Chiogna, G. (2026). Numerical simulation and analysis of mixing enhancement due to chaotic advection using an adaptive approach for approximating the dilution index. (Unpublished, Submitted).

2025

  • Alqadi, M., Zaharieva, S., Commichau, A., Disse, M., Koellner, T., & Chiogna, G. (2025). Developing and Implementing a Decision Support System-Integrated Framework for Evaluating Solar Park Effects on Water-Related Ecosystem Services. Sustainability, 17(7). https://doi.org/10.3390/su17073121
  • Ji, H., Chiogna, G., Chang, W., Richieri, B., Chen, L., Luo, M.,... Huang, K. (2025). Investigating the structure of a multiple karst aquifer system and its hydrological process response using high-resolution multi-tracer data. Journal of Hydrology, 657. https://doi.org/10.1016/j.jhydrol.2025.133152
  • Ji, H., Chiogna, G., Richieri, B., Fan, X., Huang, K., Chen, C.,... Zhao, H. (2025). High-frequency dual-tracer approach to identify contaminant transport pathways and quantify migration behaviors in karst underground river system. Journal of Hydrology, 662. https://doi.org/10.1016/j.jhydrol.2025.133935
  • Richieri, B., Sivelle, V., Hartmann, A., Labat, D., Muniruzzaman, M., & Chiogna, G. (2025). LuKARS 3.0: a high-performance computing software to model flow and transport processes in karst aquifers. ENVIRON MODELL SOFTW , 193. https://doi.org/10.1016/j.envsoft.2025.106642
  • Schaffhauser, T., Hofmeister, F., Chiogna, G., Merk, F., Tuo, Y., Machnitzke, J.,... Disse, M. (2025). Merits and limits of SWAT-GL: Application in contrasting glaciated catchments. Hydrology and Earth System Sciences, 29(14), 3227-3256. https://doi.org/10.5194/hess-29-3227-2025
  • Senarathne, S.L., van Geldern, R., Chandrajith, R., Chiogna, G., & Barth, J. (2025). Implications for the Missing South Asian Carbon Sink: Hydrologic Coupling of Water and Carbon Balances in a Tropical Catchment. Journal of Geophysical Research: Biogeosciences, 130(7). https://doi.org/10.1029/2025JG008839
  • Venus, T.E., Ola, O., Alp, M., Bätz, N., Bejarano, M.D., Boavida, I.,... Hayes, D.S. (2025). The power of hydropeaking: Trade-offs between flexible hydropower and river ecosystem services in Europe. Ecological Economics, 233. https://doi.org/10.1016/j.ecolecon.2025.108583
  • Ye, Y., Liu, S., Chiogna, G., Lu, C., & Rolle, M. (2025). Density Effects on Mixing in Porous Media: Multi-dimensional Flow-Through Experiments and Model-Based Interpretation. Transport in Porous Media, 152(4). https://doi.org/10.1007/s11242-025-02161-9
  • Ziliotto, F., Basilio Hazas, M., Muhr, M., Ahmadi, N., Rolle, M., & Chiogna, G. (2025). Relevance of Local Dispersion on Mixing Enhancement in Engineering Injection and Extraction Systems in Porous Media: Insights from Laboratory Bench-Scale Experiments and Modeling. Transport in Porous Media, 152(3). https://doi.org/10.1007/s11242-025-02155-7
  • v. Wenczowski, S., Sakai, Y., Casas-Mulet, R., Chiogna, G., Geist, J., & Manhart, M. (2025). Assessing the Impact of Weak Buoyancy Effects on Hyporheic Exchange: A Study by Pore-Resolved Direct Numerical Simulation. Transport in Porous Media, 152(9). https://doi.org/10.1007/s11242-025-02192-2
  • Çallı, K., Chiogna, G., Bittner, D., Sivelle, V., Labat, D., Richieri, B.,... Hartmann, A. (2025). Karst Water Resources in a Changing World: Review of Solute Transport Modeling Approaches. Reviews of Geophysics, 63(1). https://doi.org/10.1029/2023RG000811

2024

  • Basilio Hazas, M., Marcolini, G., Wohlmuth, B., & Chiogna, G. (2024). Indicators for the Assessment of the Impact of Hydropeaking on Aquifers. Geophysical Research Letters, 51(12). https://doi.org/10.1029/2023GL107611
  • Chiogna, G., Marcolini, G., Engel, M., & Wohlmuth, B. (2024). Sensitivity analysis in the wavelet domain: a comparison study. Stochastic Environmental Research and Risk Assessment, 38(4), 1669-1684. https://doi.org/10.1007/s00477-023-02654-3
  • Feistner, C., Basilio Hazas, M., Wohlmuth, B.I., & Chiogna, G. (2024). Impact of Chaotic Advection on Solute Transport in Porous Media. Poster presentation at European Geosciences Union General Assembly 2024 (EGU24), Vienna, AT.
  • Friedrich, S., Gerner, A., Tarantik, M., Chiogna, G., & Disse, M. (2024). Assessment of rewetting scenarios under varying climate conditions in a partially restored raised bog in Bavaria, Germany. Journal of Hydrology: Regional Studies, 52. https://doi.org/10.1016/j.ejrh.2024.101695
  • Richieri, B., Bittner, D., Sivelle, V., Hartmann, A., Labat, D., & Chiogna, G. (2024). On the value of hydrochemical data for the interpretation of flow and transport processes in the Baget karst system, France. Hydrogeology Journal. https://doi.org/10.1007/s10040-024-02801-2
  • Schaffhauser, T., Tuo, Y., Hofmeister, F., Chiogna, G., Huang, J., Merk, F., & Disse, M. (2024). SWAT-GL: A new glacier routine for the hydrological model SWAT. Journal of the American Water Resources Association. https://doi.org/10.1111/1752-1688.13199
  • van Tiel, M., Aubry-Wake, C., Somers, L., Andermann, C., Avanzi, F., Baraer, M.,... Yapiyev, V. (2024). Cryosphere–groundwater connectivity is a missing link in the mountain water cycle. Nature Water, 2(7), 624-637. https://doi.org/10.1038/s44221-024-00277-8

2023

  • Alqadi, M., Al Dwairi, A., Merchán-Rivera, P., & Chiogna, G. (2023). Presentation of DeMa (Decision Support Software and Database for Wellfield Management) and Its Application for the Wadi Al Arab Wellfield. Water, 15(2). https://doi.org/10.3390/w15020331
  • Basilio Hazas, M., Ziliotto, F., Lee, J., Rolle, M., & Chiogna, G. (2023). Evolution of plume geometry, dilution and reactive mixing in porous media under highly transient flow fields at the surface water-groundwater interface. Journal of Contaminant Hydrology, 258. https://doi.org/10.1016/j.jconhyd.2023.104243
  • Hayes, D.S., Bruno, M.C., Alp, M., Boavida, I., Batalla, R.J., Bejarano, M.D.,... Venus, T.E. (2023). 100 key questions to guide hydropeaking research and policy. Renewable & Sustainable Energy Reviews, 187. https://doi.org/10.1016/j.rser.2023.113729
  • Hofmeister, F., Graziano, F., Marcolini, G., Willems, W., Disse, M., & Chiogna, G. (2023). Quality assessment of hydrometeorological observational data and their influence on hydrological model results in Alpine catchments. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 68(4), 552-571. https://doi.org/10.1080/02626667.2023.2172335
  • Hofmeister, F., Venegas, B.R., Sentlinger, G., Tarantik, M., Blume, T., Disse, M., & Chiogna, G. (2023). Automated streamflow measurements in high-elevation Alpine catchments. River Research and Applications, 39(10), 2079-2091. https://doi.org/10.1002/rra.4203
  • Manoj J, A., Pérez Ciria, T., Chiogna, G., Salzmann, N., & Agarwal, A. (2023). Characterising the coincidence of soil moisture – precipitation extremes as a possible precursor to European floods. Journal of Hydrology, 620. https://doi.org/10.1016/j.jhydrol.2023.129445
  • Richieri, B., Bittner, D., Hartmann, A., Benettin, P., van Breukelen, B.M., Labat, D., & Chiogna, G. (2023). Using continuous electrical conductivity measurements to derive major solute concentrations in karst systems. Hydrological Processes, 37(6). https://doi.org/10.1002/hyp.14929

2022

  • Alqadi, M., Aldwairi, A., Margane, A., Brueckner, F., Schneider, M., Merchán-Rivera, P., & Chiogna, G. (2022). Development of a User-friendly Tool for Groundwater Wellfields Management. In Proceedings of the IAHR World Congress (pp. 3347-3356). Granada, ESP: International Association for Hydro-Environment Engineering and Research.
  • Basilio Hazas, M., & Chiogna, G. (2022). Effects of Highly Transient Boundary Conditions on Groundwater Solute Transport. In Proceedings of the IAHR World Congress (pp. 3832-3840). Granada, ESP: International Association for Hydro-Environment Engineering and Research.
  • Basilio Hazas, M., Marcolini, G., Castagna, M., Galli, M., Singh, T., Wohlmuth, B., & Chiogna, G. (2022). Drought Conditions Enhance Groundwater Table Fluctuations Caused by Hydropower Plant Management. Water Resources Research, 58(10). https://doi.org/10.1029/2022WR032712
  • Basilio Hazas, M., Ziliotto, F., Rolle, M., & Chiogna, G. (2022). Linking mixing and flow topology in porous media: An experimental proof. Physical Review E, 105(3). https://doi.org/10.1103/PhysRevE.105.035105
  • Beddrich, J., Gupta, S., Wohlmuth, B., & Chiogna, G. (2022). The importance of topographic gradients in alpine permafrost modeling. Advances in Water Resources, 170. https://doi.org/10.1016/j.advwatres.2022.104321
  • Hofmeister, F., Arias-Rodriguez, L.F., Premier, V., Marin, C., Notarnicola, C., Disse, M., & Chiogna, G. (2022). Intercomparison of Sentinel-2 and modelled snow cover maps in a high-elevation Alpine catchment. Journal of Hydrology X, 15. https://doi.org/10.1016/j.hydroa.2022.100123
  • Hofmeister, F., Spadina, A., & Chiogna, G. (2022). Coupling Support Vector Machine and physically-based Hydrological Modeling for Reducing the Computational Time in Climate Change Studies. In Proceedings of the IAHR World Congress (pp. 4827-4836). Granada, ESP: International Association for Hydro-Environment Engineering and Research.
  • Merchán-Rivera, P., Basilio Hazas, M., Marcolini, G., & Chiogna, G. (2022). Propagation of hydropeaking waves in heterogeneous aquifers: effects on flow topology and uncertainty quantification. GEM - International Journal on Geomathematics, 13(1). https://doi.org/10.1007/s13137-022-00202-9
  • Merchán-Rivera, P., Geist, A., Disse, M., Huang, J., & Chiogna, G. (2022). A Bayesian framework to assess and create risk maps of groundwater flooding. Journal of Hydrology, 610. https://doi.org/10.1016/j.jhydrol.2022.127797
  • Pérez-Ciria, T., Labat, D., & Chiogna, G. (2022). Heterogeneous spatiotemporal streamflow response to large-scale climate indexes in the Eastern Alps. Journal of Hydrology, 615. https://doi.org/10.1016/j.jhydrol.2022.128698
  • Singh, T., Gupta, S., Chiogna, G., Krause, S., & Wohlmuth, B. (2022). Impacts of Peak-Flow Events on Hyporheic Denitrification Potential. Water Resources Research, 58(3). https://doi.org/10.1029/2021WR031407
  • Sivelle, V., Jourde, H., Bittner, D., Richieri, B., Labat, D., Hartmann, A., & Chiogna, G. (2022). Considering land cover and land use (LCLU) in lumped parameter modeling in forest dominated karst catchments. Journal of Hydrology, 612. https://doi.org/10.1016/j.jhydrol.2022.128264

2021

  • Alqadi, M., Al Dwairi, A., Dehnavi, S., Margane, A., Al Raggad, M., Al Wreikat, M., & Chiogna, G. (2021). A novel method to assess the impact of a government’s water strategy on research: A case study of Azraq Basin, Jordan. Water, 13(15). https://doi.org/10.3390/w13152138
  • Bittner, D., Engel, M., Wohlmuth, B., Labat, D., & Chiogna, G. (2021). Temporal Scale-Dependent Sensitivity Analysis for Hydrological Model Parameters Using the Discrete Wavelet Transform and Active Subspaces. Water Resources Research, 57(10). https://doi.org/10.1029/2020WR028511
  • Bittner, D., Richieri, B., & Chiogna, G. (2021). Unraveling the time-dependent relevance of input model uncertainties for a lumped hydrologic model of a pre-alpine karst system 论阿尔卑斯前缘岩溶系统集总水文模型输入模型不确定性的时间相关性 Comprendre l’importance temporelle des incertitudes des modèles d’entrée pour un modèle hydrologique global d’un système karstique préalpin Desfazendo a relevância temporal das incertezas do modelo de entrada para um modelo hidrológico de um sistema de cárstico pré-alpino Análisis de la relevancia temporal de las incertidumbres en los modelos de entrada para un modelo hidrológico compuesto en un sistema kárstico prealpino. Hydrogeology Journal, 29(7), 2363-2379. https://doi.org/10.1007/s10040-021-02377-1
  • Matiu, M., Crespi, A., Bertoldi, G., Maria Carmagnola, C., Marty, C., Morin, S.,... Weilguni, V. (2021). Observed snow depth trends in the European Alps: 1971 to 2019. Cryosphere, 15(3), 1343-1382. https://doi.org/10.5194/tc-15-1343-2021
  • Merchán-Rivera, P., Wohlmuth, B., & Chiogna, G. (2021). Identifying Stagnation Zones and Reverse Flow Caused by River-Aquifer Interaction: An Approach Based on Polynomial Chaos Expansions. Water Resources Research, 57(12). https://doi.org/10.1029/2021WR029824
  • Ziliotto, F., Basilio Hazas, M., Rolle, M., & Chiogna, G. (2021). Mixing Enhancement Mechanisms in Aquifers Affected by Hydropeaking: Insights From Flow-Through Laboratory Experiments. Geophysical Research Letters, 48(21). https://doi.org/10.1029/2021GL095336

2020

  • Bittner, D., Parente, M.T., Mattis, S., Wohlmuth, B., & Chiogna, G. (2020). Identifying relevant hydrological and catchment properties in active subspaces: An inference study of a lumped karst aquifer model. Advances in Water Resources, 135. https://doi.org/10.1016/j.advwatres.2019.103472
  • Bittner, D., Rychlik, A., Klöffel, T., Leuteritz, A., Disse, M., & Chiogna, G. (2020). A GIS-based model for simulating the hydrological effects of land use changes on karst systems – The integration of the LuKARS model into FREEWAT. ENVIRON MODELL SOFTW , 127. https://doi.org/10.1016/j.envsoft.2020.104682
  • Bittner, D., Sheikhy Narany, T., Kohl, B., Disse, M., & Chiogna, G. (2020). Corrigendum to “Modeling the hydrological impact of land use change in a dolomite dominated karst system” (Journal of Hydrology (2018) 567 (267–279), (S0022169418307789), (10.1016/j.jhydrol.2018.10.017)). Journal of Hydrology, 580. https://doi.org/10.1016/j.jhydrol.2019.124191
  • Marchina, C., Zuecco, G., Chiogna, G., Bianchini, G., Carturan, L., Comiti, F.,... Penna, D. (2020). Alternative methods to determine the δ2H-δ18O relationship: An application to different water types. Journal of Hydrology, 587. https://doi.org/10.1016/j.jhydrol.2020.124951
  • Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V.,... Hartmann, A. (2020). Author Correction: Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater (Scientific Data, (2020), 7, 1, (59), 10.1038/s41597-019-0346-5). Scientific Data, 7(1). https://doi.org/10.1038/s41597-020-00590-3
  • Olarinoye, T., Gleeson, T., Marx, V., Seeger, S., Adinehvand, R., Allocca, V.,... Hartmann, A. (2020). Global karst springs hydrograph dataset for research and management of the world’s fastest-flowing groundwater. Scientific Data, 7(1). https://doi.org/10.1038/s41597-019-0346-5
  • Pérez Ciria, T., & Chiogna, G. (2020). Intra-catchment comparison and classification of long-term streamflow variability in the Alps using wavelet analysis. Journal of Hydrology, 587. https://doi.org/10.1016/j.jhydrol.2020.124927
  • Pérez Ciria, T., Puspitarini, H.D., Chiogna, G., François, B., & Borga, M. (2020). Multi-temporal scale analysis of complementarity between hydro and solar power along an alpine transect. Science of the Total Environment, 741. https://doi.org/10.1016/j.scitotenv.2020.140179
  • Ye, Y., Chiogna, G., Lu, C., & Rolle, M. (2020). Plume deformation, mixing, and reaction kinetics: An analysis of interacting helical flows in three-dimensional porous media. Physical Review E, 102(1). https://doi.org/10.1103/PhysRevE.102.013110

2019

  • Alqadi, M., Margane, A., Raggad, M.A., Subah, H.A., Disse, M., Hamdan, I., & Chiogna, G. (2019). Implementation of simple strategies to improve wellfield management in arid regions: The case study of Wadi Al Arab Wellfield, Jordan. Sustainability, 11(21). https://doi.org/10.3390/su11215903
  • Cano-Paoli, K., Chiogna, G., & Bellin, A. (2019). Convenient use of electrical conductivity measurements to investigate hydrological processes in Alpine headwaters. Science of the Total Environment, 685, 37-49. https://doi.org/10.1016/j.scitotenv.2019.05.166
  • Marcolini, G., Koch, R., Chimani, B., Schöner, W., Bellin, A., Disse, M., & Chiogna, G. (2019). Evaluation of homogenization methods for seasonal snow depth data in the Austrian Alps, 1930–2010. International Journal of Climatology, 39(11), 4514-4530. https://doi.org/10.1002/joc.6095
  • Pérez Ciria, T., Labat, D., & Chiogna, G. (2019). Detection and interpretation of recent and historical streamflow alterations caused by river damming and hydropower production in the Adige and Inn river basins using continuous, discrete and multiresolution wavelet analysis. Journal of Hydrology, 578. https://doi.org/10.1016/j.jhydrol.2019.124021
  • Rügner, H., Schwientek, M., Milačič, R., Zuliani, T., Vidmar, J., Paunović, M.,... Grathwohl, P. (2019). Particle bound pollutants in rivers: Results from suspended sediment sampling in Globaqua River Basins. Science of the Total Environment, 647, 645-652. https://doi.org/10.1016/j.scitotenv.2018.08.027
  • Sheikhy Narany, T., Bittner, D., Disse, M., & Chiogna, G. (2019). Spatial and temporal variability in hydrochemistry of a small-scale dolomite karst environment. Environmental Earth Sciences, 78(9). https://doi.org/10.1007/s12665-019-8276-2
  • Teixeira Parente, M., Bittner, D., Mattis, S.A., Chiogna, G., & Wohlmuth, B. (2019). Bayesian Calibration and Sensitivity Analysis for a Karst Aquifer Model Using Active Subspaces. Water Resources Research, 55(8), 7086-7107. https://doi.org/10.1029/2019WR024739

2018

  • Bittner, D., Narany, T.S., Kohl, B., Disse, M., & Chiogna, G. (2018). Modeling the hydrological impact of land use change in a dolomite-dominated karst system. Journal of Hydrology, 567, 267-279. https://doi.org/10.1016/j.jhydrol.2018.10.017
  • Chiogna, G., Marcolini, G., Liu, W., Pérez Ciria, T., & Tuo, Y. (2018). Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments. Science of the Total Environment, 633, 220-229. https://doi.org/10.1016/j.scitotenv.2018.03.162
  • Chiogna, G., Skrobanek, P., Narany, T.S., Ludwig, R., & Stumpp, C. (2018). Effects of the 2017 drought on isotopic and geochemical gradients in the Adige catchment, Italy. Science of the Total Environment, 645, 924-936. https://doi.org/10.1016/j.scitotenv.2018.07.176
  • Tuo, Y., Marcolini, G., Disse, M., & Chiogna, G. (2018). A multi-objective approach to improve SWAT model calibration in alpine catchments. Journal of Hydrology, 559, 347-360. https://doi.org/10.1016/j.jhydrol.2018.02.055
  • Tuo, Y., Marcolini, G., Disse, M., & Chiogna, G. (2018). Calibration of snow parameters in SWAT: comparison of three approaches in the Upper Adige River basin (Italy). Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 63(4), 657-678. https://doi.org/10.1080/02626667.2018.1439172
  • Vigiak, O., Lutz, S., Mentzafou, A., Chiogna, G., Tuo, Y., Majone, B.,... Pistocchi, A. (2018). Uncertainty of modelled flow regime for flow-ecological assessment in Southern Europe. Science of the Total Environment, 615, 1028-1047. https://doi.org/10.1016/j.scitotenv.2017.09.295
  • Ye, Y., Chiogna, G., Lu, C., & Rolle, M. (2018). Effect of Anisotropy Structure on Plume Entropy and Reactive Mixing in Helical Flows. Transport in Porous Media, 121(2), 315-332. https://doi.org/10.1007/s11242-017-0964-3

2017

  • Avesani, D., Dumbser, M., Chiogna, G., & Bellin, A. (2017). An alternative smooth particle hydrodynamics formulation to simulate chemotaxis in porous media. Journal of Mathematical Biology, 74(5), 1037-1058. https://doi.org/10.1007/s00285-016-1049-6
  • Chiogna, G., & Rolle, M. (2017). Entropy-based critical reaction time for mixing-controlled reactive transport. Water Resources Research, 53(8), 7488-7498. https://doi.org/10.1002/2017WR020522
  • Mandaric, L., Diamantini, E., Stella, E., Cano-Paoli, K., Valle-Sistac, J., Molins-Delgado, D.,... Petrovic, M. (2017). Contamination sources and distribution patterns of pharmaceuticals and personal care products in Alpine rivers strongly affected by tourism. Science of the Total Environment, 590-591, 484-494. https://doi.org/10.1016/j.scitotenv.2017.02.185
  • Marcolini, G., Bellin, A., & Chiogna, G. (2017). Performance of the Standard Normal Homogeneity Test for the homogenization of mean seasonal snow depth time series. International Journal of Climatology, 37, 1267-1277. https://doi.org/10.1002/joc.4977
  • Marcolini, G., Bellin, A., Disse, M., & Chiogna, G. (2017). Variability in snow depth time series in the Adige catchment. Journal of Hydrology: Regional Studies, 13, 240-254. https://doi.org/10.1016/j.ejrh.2017.08.007

2016

  • Chiogna, G., Cirpka, O.A., & Herrera, P.A. (2016). Helical Flow and Transient Solute Dilution in Porous Media. Transport in Porous Media, 111(3), 591-603. https://doi.org/10.1007/s11242-015-0613-7
  • Chiogna, G., Majone, B., Cano Paoli, K., Diamantini, E., Stella, E., Mallucci, S.,... Bellin, A. (2016). A review of hydrological and chemical stressors in the Adige catchment and its ecological status. Science of the Total Environment, 540, 429-443. https://doi.org/10.1016/j.scitotenv.2015.06.149
  • Di Dato, M., Fiori, A., Chiogna, G., De Barros, F.P., & Bellin, A. (2016). Impact of the spatial structure of the hydraulic conductivity field on vorticity in three-dimensional flows. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 472(2187). https://doi.org/10.1098/rspa.2015.0730
  • Duan, Z., Liu, J., Tuo, Y., Chiogna, G., & Disse, M. (2016). Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment, 573, 1536-1553. https://doi.org/10.1016/j.scitotenv.2016.08.213
  • Tuo, Y., Duan, Z., Disse, M., & Chiogna, G. (2016). Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Science of the Total Environment, 573, 66-82. https://doi.org/10.1016/j.scitotenv.2016.08.034
  • Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P., & Rolle, M. (2016). Experimental investigation of transverse mixing in porous media under helical flow conditions. Physical Review E, 94(1). https://doi.org/10.1103/PhysRevE.94.013113

2015

  • Avesani, D., Herrera, P., Chiogna, G., Bellin, A., & Dumbser, M. (2015). Smooth Particle Hydrodynamics with nonlinear Moving-Least-Squares WENO reconstruction to model anisotropic dispersion in porous media. Advances in Water Resources, 80, 43-59. https://doi.org/10.1016/j.advwatres.2015.03.007
  • Castagna, M., Bellin, A., & Chiogna, G. (2015). Uncertainty estimation and evaluation of shallow aquifers' exploitability: The case study of the Adige valley aquifer (Italy). Water, 7(7), 3367-3395. https://doi.org/10.3390/w7073367
  • Cirpka, O.A., Chiogna, G., Rolle, M., & Bellin, A. (2015). Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resources Research, 51(1), 241-260. https://doi.org/10.1002/2014WR015331
  • Tuo, Y., Chiogna, G., & Disse, M. (2015). A multi-criteria model selection protocol for practical applications to nutrient transport at the catchment scale. Water, 7(6), 2851-2880. https://doi.org/10.3390/w7062851
  • Ye, Y., Chiogna, G., Cirpka, O., Grathwohl, P., & Rolle, M. (2015). Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems. Journal of Contaminant Hydrology, 172, 33-47. https://doi.org/10.1016/j.jconhyd.2014.11.002
  • Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P., & Rolle, M. (2015). Enhancement of plume dilution in two-dimensional and three-dimensional porous media by flow focusing in high-permeability inclusions. Water Resources Research, 51(7), 5582-5602. https://doi.org/10.1002/2015WR016962
  • Ye, Y., Chiogna, G., Cirpka, O.A., Grathwohl, P., & Rolle, M. (2015). Experimental Evidence of Helical Flow in Porous Media. Physical Review Letters, 115(19). https://doi.org/10.1103/PhysRevLett.115.194502

2014

  • Chiogna, G., Rolle, M., Bellin, A., & Cirpka, O.A. (2014). Helicity and flow topology in three-dimensional anisotropic porous media. Advances in Water Resources, 73, 134-143. https://doi.org/10.1016/j.advwatres.2014.06.017
  • Chiogna, G., Santoni, E., Camin, F., Tonon, A., Majone, B., Trenti, A., & Bellin, A. (2014). Stable isotope characterization of the Vermigliana catchment. Journal of Hydrology, 509, 295-305. https://doi.org/10.1016/j.jhydrol.2013.11.052

2013

  • Chiogna, G., & Bellin, A. (2013). Analytical solution for reactive solute transport considering incomplete mixing within a reference elementary volume. Water Resources Research, 49(5), 2589-2600. https://doi.org/10.1002/wrcr.20200
  • Hochstetler, D.L., Rolle, M., Chiogna, G., Haberer, C.M., Grathwohl, P., & Kitanidis, P.K. (2013). Effects of compound-specific transverse mixing on steady-state reactive plumes: Insights from pore-scale simulations and Darcy-scale experiments. Advances in Water Resources, 54, 1-10. https://doi.org/10.1016/j.advwatres.2012.12.007
  • Rolle, M., Chiogna, G., Hochstetler, D.L., & Kitanidis, P.K. (2013). On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale. Journal of Contaminant Hydrology, 153, 51-68. https://doi.org/10.1016/j.jconhyd.2013.07.006

2012

  • Chiogna, G., Cirpka, O.A., Grathwohl, P., & Rolle, M. (2012). Compound-specific local and effective transverse dispersion coefficients for conservative and reactive mixing in heterogeneous porous media. In IAHS-AISH Publication (pp. 163-168). DEU.
  • Chiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., & Rolle, M. (2012). Mixing, entropy and reactive solute transport. Geophysical Research Letters, 39(20). https://doi.org/10.1029/2012GL053295
  • Cirpka, O.A., Rolle, M., Chiogna, G., De Barros, F.P., & Nowak, W. (2012). Stochastic evaluation of mixing-controlled steady-state plume lengths in two-dimensional heterogeneous domains. Journal of Contaminant Hydrology, 138-139, 22-39. https://doi.org/10.1016/j.jconhyd.2012.05.007
  • Rolle, M., Hochstetler, D., Chiogna, G., Kitanidis, P.K., & Grathwohl, P. (2012). Experimental Investigation and Pore-Scale Modeling Interpretation of Compound-Specific Transverse Dispersion in Porous Media. Transport in Porous Media, 93(3), 347-362. https://doi.org/10.1007/s11242-012-9953-8

2011

  • Chiogna, G., Cirpka, O.A., Grathwohl, P., & Rolle, M. (2011). Relevance of local compound-specific transverse dispersion for conservative and reactive mixing in heterogeneous porous media. Water Resources Research, 47(7). https://doi.org/10.1029/2010WR010270
  • Chiogna, G., Cirpka, O.A., Grathwohl, P., & Rolle, M. (2011). Transverse mixing of conservative and reactive tracers in porous media: Quantification through the concepts of flux-related and critical dilution indices. Water Resources Research, 47(2). https://doi.org/10.1029/2010WR009608
  • Cirpka, O.A., De Barros, F.P., Chiogna, G., & Nowak, W. (2011). Probability density function of steady state concentration in two-dimensional heterogeneous porous media. Water Resources Research, 47(11). https://doi.org/10.1029/2011WR010750
  • Cirpka, O.A., De Barros, F.P., Chiogna, G., Rolle, M., & Nowak, W. (2011). Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media. Water Resources Research, 47(6). https://doi.org/10.1029/2010WR010279
  • Rolle, M., Chiogna, G., Eberhardt, C., Haberer, C., Griebler, C., Cirpka, O.A., & Grathwohl, P. (2011). Two-dimensional flow-through experiments: Versatile test systems for a combined investigation of transport and reactive processes in porous media. In IAHS-AISH Publication (pp. 259-262). CHE.

2010

  • Chiogna, G., Eberhardt, C., Grathwohl, P., Cirpka, O.A., & Rolle, M. (2010). Evidence of compound-dependent hydrodynamic and mechanical transverse dispersion by multitracer laboratory experiments. Environmental Science & Technology, 44(2), 688-693. https://doi.org/10.1021/es9023964
  • Rolle, M., Chiogna, G., Bauer, R., Griebler, C., & Grathwohl, P. (2010). Isotopic fractionation by transverse dispersion: Flow-through microcosms and reactive transport modeling study. Environmental Science & Technology, 44(16), 6167-6173. https://doi.org/10.1021/es101179f

2009

  • Rolle, M., Eberhardt, C., Chiogna, G., Cirpka, O.A., & Grathwohl, P. (2009). Enhancement of dilution and transverse reactive mixing in porous media: Experiments and model-based interpretation. Journal of Contaminant Hydrology, 110(3-4), 130-142. https://doi.org/10.1016/j.jconhyd.2009.10.003

  • Transferring knowledge of probabilistic groundwater flood maps for improved risk assessment


    (Third Party Funds Single)
    Term: 1. June 2025 - 31. October 2025
    Funding source: andere Förderorganisation
    →More information
  • Grundwasserüberschwemmungen: Entwicklung eines Ansatzes zur Risikobewertung und -kommunikation


    (Third Party Funds Single)
    Term: 19. April 2025 - 18. October 2026
    Funding source: Deutsche Bundesstiftung Umwelt
    Abstract
    Asclimate change drives more frequent extreme weather events, groundwaterflooding poses an increasing threat to infrastructure and public safety. TheGrARBeKo project (Grundwasserüberschwemmungen: Entwicklung eines Ansatzes zurRisikobewertung und -kommunikation) addresses this challenge by developing arobust, data-driven methodology for risk assessment and public engagement.Ledby Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), the project bringstogether key partners:
    • Okeanos Smart Data Solutions GmbH (AI and hydroinformatics),
    • Zentrum für Digitale Entwicklung GmbH (ZDE) (citizen participation and strategic communication),
    • KI-P GmbH (sensor integration and data visualization), and
    • the City of Garching, which contributes monitoring infrastructure and supports public outreach.
    UsingGarching as a pilot site, GrARBeKo combines groundwater modeling (MODFLOW) withmachine learning techniques (ML) to generate rapid, high-resolution flood riskmaps. By involving citizens in the installation of low-cost sensors and thecollection of real-world data, such as water levels in basements, the projectstrengthens both the technical models and community awareness.Theproject also aims to test innovative sensing technologies, improve uncertaintyquantification using Bayesian inference, and produce guidelines that can beadapted by other municipalities. In this way, GrARBeKo improves floodpreparedness locally while offering a scalable model for climate resilienceplanning.
    →More information
  • UnSAT-EIE - Kopplung der Boden-Aquifer-Behandlung und der technischen Injektion und Extraktion zur Verbesserung der Durchmischung an der Schnittstelle zwischen der gesättigten und der ungesättigten Zone


    (Third Party Funds Single)
    Term: 1. April 2025 - 31. March 2028
    Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    →More information
  • Ursachen und Risikobewertung von Grundwasserüberschwemmung


    (Third Party Funds Single)
    Term: 1. April 2024 - 30. September 2025
    Funding source: andere Förderorganisation
    Abstract
    Grundwasserüberschwemmungenkönnen schwere Schäden an Häusern, Versorgungseinrichtungen und Infrastrukturenverursachen und zu erheblichen wirtschaftlichen und soziale Kosten führen.Numerische Modelle werden eingesetzt, um diese Ereignisse zu verstehen, undbilden die Grundlage für die Erstellung von Produkten für das Risikomanagementund die Kommunikation. Im Gegensatz zu pluvialen und fluvialen Überschwemmungenist ein offenes Problem bei der Analyse der Anfälligkeit fürGrundwasserüberschwemmungen das Fehlen einer probabilistischen Bewertung, dieparametrische Unsicherheiten berücksichtigen. Daher schlagen wir einenBayes-basierten Rahmen vor, um probabilistische Risikokarten zu erstellen unddie Anfälligkeit für Grundwasserüberschwemmungen zu ermitteln. Unsere Forschungsfragen sinddeshalb:-       Ist es möglich die Ursachen vonGrundwasserüberschwemmungen zu identifizieren unter Berücksichtigung derUnsicherheiten von Modellparametern und verfügbaren Messungen?-       Ist es möglich mittels der Modellergebnisse einFrühwarnsystem basierend auf Grundwassermessungen zu entwickeln und validieren?-       Welche technischen Maßnahmen können das Risikovon Grundwasserüberschwemmungen reduzieren und mit welchen Sicherheitsgrad?Diese Forschungsfragen werdenbeantwortet mit Hilfe der Daten, die für die Gemeinde Garching im Dezember 2023und Januar 2024 gesammelt wurden und der Messungen die im Projekt durchgeführtwerden.
    →More information
  • Impact of climate change on groundwater storage in high Alpine catchments: from observation to model predictions


    (Third Party Funds Group – Sub project)
    Overall project: Sensitivity of High Alpine Geosystems to Climate Change Since 1850 (SEHAG)
    Term: 1. April 2024 - 31. December 2025
    Funding source: DFG / Forschungsgruppe (FOR)
    →More information
  • RObust Conceptualisation of KArst Transport


    (Third Party Funds Single)
    Term: 1. April 2024 - 31. March 2025
    Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Abstract
    Konzeptionelle Modelle werden häufig dafür verwendet, um den Abfluss aus Karstquellen vorherzusagen. Die Modellierung von Stofftransportprozessen im Karst stellt hingegen nach wie vor eine Herausforderung dar. Unsere Hypothese ist, dass eine parallelisierte robuste Konzeptualisierung von Quellabfluss und Stofftransport die Modellabbildung der hydrologischen Prozesse in den verschiedenen Kompartimenten von Karstgrundwasserleitern, sprich dem Boden undEpikarst, Matrix und Lösungskanälen, deutlich verbessert. Dazu werden wir einen Kalibrierungsansatz basierend auf den verschiedenen Zeitskalen der Wavelet Transformation anwenden, um sowohl eine robuste Simulation von Quellabfluss und Stofftransport, als auch eine adäquate Modelldarstellung der relevanten hydrologischen Prozesse zu erhalten. Mit Hilfe von experimentellen Ergebnissen aus ereignisbasierten Probenahmekampagnen werden wir zeitlich hochaufgelöste Zeitreihen der elektrischen Leifähigkeit in die dominanten Ionenkonzentrationen zerlegen, um relevante Faktoren zu ermitteln, die die Transportprozesse in den verschiedenen Kompartimenten von Karstsystemen beeinflussen. Auf der Grundlage unserer Erkenntnisse werden wir Stofftransportmodelle unterschiedlicher Komplexität entwickeln und anhand mehrererKarstsysteme validieren.
    →More information
  • Capacity building for management and governance of MICROplastics in DRINKing water resources of Danube Region


    (Third Party Funds Single)
    Term: 1. April 2024 - 20. June 2026
    Funding source: Bayerisches Staatsministerium für Wissenschaft und Kunst (StMWK) (seit 2018)
    URL: https://interreg-danube.eu/projects/microdrink
    →More information
  • Impact of surface water management on groundwater mixing in Alpine catchments


    (Third Party Funds Single)
    Term: 1. April 2024 - 31. March 2025
    Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Abstract
    Geophysikalische Strömungen sind gewöhnlich durch komplexes räumliches und zeitliches dynamisches Verhalten charakterisiert, das die Ausbreitung von gelösten Stoffen, deren Verdünnung und reaktives Vermischen bestimmt. Ineffizientes Vermischen, charakteristisch für Strömungen mit geringer Reynoldszahl wie bei Grundwasserströmungen, kann die effektive Reaktionsrate im System wesentlich verringern. Das Vermischen ist insbesondere im Zusammenhang mit der Verschmutzung von Grundwasserkörpern relevant, da es hierbei den Schadstoffabbau hemmen kann. In Anbetracht von geringer Vermischung spielen die Topologie der Strömung und kinetische Prozesse wie das Ausdehnen und Falten bei zahlreichen räumlichen und zeitlichen Skalen eine zentrale Rolle in der Quantifizierung und im Verständnis von Verbleib und Verhalten der Schadstoffe. Unsere Hypothese dieses Projektes ist, dass die dynamische Interaktion zwischen Oberflächen- und Grundwasser eine zentrale Bedeutung für die exakte Quantifizierung der Vermischung in porösen Grundwasserleitern hat. Insbesondere beabsichtigen wir zu untersuchen, wie das Oberflächenwassermanagement in alpinen Einzugsgebieten, welche von starken anthropogenen Einflüssen beeinträchtigt sind (Schwall-/ Sunkbetrieb bei Wasserkraftwerken), Mischungsprozesse bei zahlreichen zeitlichen Skalen (mehrstündlich, täglich, wöchentlich, saisonal) steuert. Das Projekt zielt darauf ab, geeignete topologische und kinematische Maße zu entwickeln und anzuwenden. Diese können als Prädiktoren für Mischungen, für die Entwicklung von neuen numerischen Ansätzen zur Lösung inverser Probleme unter solch komplexen und transienten Bedingungen und für das Abschätzen von Parameterunsicherheiten verwendet werden. Neben numerischen Simulationen werden die in diesem Projekt entwickelten Methoden in einer echten Fallstudie (Etsch-Grundwasserleiter in Trient, Italien) geprüft.Die Neuheit des beabsichtigten Forschungsvorhabens liegt in der Untersuchung i) des Einflusses von Oberflächenmanagement in alpinen Einzugsgebieten auf Grundwasserströmung in alluvialen Grundwasserleitern (d.h. jenseits der hyporheischen Zone); ii) des Einflusses von stark transienten Grenzflächenübertragungsbedingungen auf die Topologie von zweidimensionalen und dreidimensionalen Grundwasserströmungen; iii) der Entwicklung von präzisen numerischen Inversion-Algorithmen zur Lösung von Grundwasserströmung unten stark transienten Randbedingungen; iv) der Quantifizierung der Unsicherheit im Zusammenhang mit Modellvorhersagen unter Berücksichtigung von hydrogeologischen Parameterunsicherheiten sowie Unsicherheiten, die die transienten Grenzflächenbedingungen betreffen.
    →More information
  • Chaotic ADvection and Mixing Enhancement in Porous Media: The Quest for Experimental Evidence


    (Third Party Funds Single)
    Term: 1. April 2024 - 31. December 2026
    Funding source: DFG-Einzelförderung / Sachbeihilfe (EIN-SBH)
    Abstract
    Das Mischen von Flüssigkeiten ist in vielen Bereichen der Wissenschaft und Technik von größter Bedeutung. In porösen Medien sind Mischprozesse normalerweise ineffizient. Eine Verbesserung der Durchmischung kann potenziell durch eine Verbesserung derSchadstofffahnenverformung durch Dehnung und Faltung des Strömungsfeldes unter Verwendung von Injektions-Extraktions-Systemen oder in Systemen, die von Natur aus eine komplexe instationäre Dynamik aufweisen, wie z.B. die Wirkung von Gezeiten,erreicht werden. Frühere Studien wurden auf mehreren räumlichen Skalen (d.h. Poren-, Darcy-, Feld- und Regionalskala) durchgeführt, wobei hauptsächlich theoretische und Modellierungsansätze verwendet wurden. Experimentelle Studien hingegen, die unterkontrollierten Bedingungen durchgeführt wurden, sind nur spärlich vorhanden. Das vorgeschlagene Forschungsprojekt zielt darauf ab, die Auswirkungen der chaotischen Advektion auf den Transport gelöster Stoffe in gesättigten porösen Medien unter kontrollierten Laborbedingungen experimentell nachzuweisen. Die experimentellenArbeiten werden von der Entwicklung neuer fortschrittlicher numerischer Methoden begleitet, die in der DUNE-Umgebung (Distributed Unified Numerics Environment) entwickelt werden, um eine genaue modellgestützte Interpretation der Ergebnisse zuermöglichen. Darüber hinaus werden auch multiparametrische Studien durchgeführt, um die realistischen Szenarien zu untersuchen, die den Rahmen von Laborexperimenten sprengen. Dieses Forschungsprojekt ist innovativ, da folgende Punkte untersuchtwerden: 1) Die Auswirkung der nichtlinearen Geschwindigkeitsabhängigkeit der Dispersion und des Nicht-Fick‘schen Transports im Allgemeinen auf die chaotische Advektion; 2) Die Auswirkung der unvollständigen Vermischung auf der Porenskala auf die effektive Vermischungsverstärkung durch chaotische Advektion; 3) Die Auswirkung der Verzögerungs- und Dichteeffekte, die den Transport von gelösten Stoffen chemischrelevanter Spezies beeinflussen, auf die durch chaotische Advektion erzielte Vermischungsverstärkung; 4) Die Auswirkung der chaotischen Advektion auf reaktiven Transport. Darüber hinaus zielen wir darauf ab, die fehlende Verbindung zwischen den Metriken, die die chaotische Advektion und die Vermischung auf der Darcy-Skalabeschreiben, herzustellen. Dies kann durch eine modellgestützte Interpretation der in diesem Forschungsprojekt gesammelten experimentellen Ergebnisse erreicht werden.
    →More information

Addition information

Instagram “Rock Galleries”

GeoZentrum live!

GZN active!

Friedrich-Alexander-Universität
GeoZentrum Nordbayern

Schlossgarten 5
91054 Erlangen
  • Impressum
  • Datenschutz
  • Barrierefreiheit
  • Facebook
  • Instagram
  • Youtube
Up